
CCG Parsing: Ambati et 
al., 2016
AUSTIN BLODGETT



Review of Transition-based Parsing



Review of Transition-based Parsing



Review of Transition-based Parsing



Ambati et al., 2016
How to parse CCG with Shift and Reduce?

New Transition Rules
◦ REDUCE-LEFT(cat): remove s1 from the stack and tag constituent as cat 
◦ REDUCE-RIGHT(cat): remove s2 from the stack and tag constituent as cat 
◦ REDUCE-UNARY(cat): remove s1 (or s2?) from the stack and tag constituent as cat 
◦ SHIFT: moves b1 from the buffer to the stack



Ambati et al., 2016
Ambati et al.’s parser uses 2296 total Transitions:
◦ 340 REDUCE-LEFT(cat)
◦ 593 REDUCE-RIGHT(cat)
◦ 78 REDUCE-UNARY(cat)
◦ 1285 SHIFT



Ambati et al., 2016
Nodes to consider: 
◦ a) top 4 nodes in the stack
◦ b) next 4 nodes in the input 
◦ c) left and right children of the top 2 nodes in the stack

34 features:
◦ Word embeddings from (a-c)
◦ POS embeddings from (a-c)
◦ CCG tag embeddings from (a, b) + lexical heads of 2 nodes in the stack

Input layer = 34 x 50 (embedding size)



Ambati et al., 2016



Ambati et al., 2016
Greedy Search



Ambati et al., 2016
Beam Search



Ambati et al., 2016
Beam Search



Evaluation
1. Supertag Prediction (F1)

2. Unlabelled F1 (per constituent)

3. ✔ Labelled F1 (per constituent)

4. ❌ Exact Match



Other Approaches
1. LSTM CCG Parsing (Lewis et al. 2016)

2. A* CCG Parsing with a Supertag-factored Model (Lewis and Steedman, 2014)



CCG Leaderboard

C&C + RNN (Xu et al., 2015)

EasyCCG (Lewis and Steedman, 2014)

Leader (Lewis et al. 2016)



CCG Leaderboard: Speed

EasyCCG (Lewis and Steedman, 2014)

LSTM GPU (Lewis et al. 2016)



A* search (Lewis and Steedman, 2014)



A* Parsing (Lewis and Steedman, 2014)
Choose next action x by minimizing:

◦ f(x) = dist(current, x) + dist(x, endpoint) 



LSTM (Lewis et al. 2016)
Stacked BiLSTM Supertagger



LSTM (Lewis et al. 2016)
Contribution: What we need is a strict deterministic grammar and a great lexical tagger



Reflections
1. Computer Scientists like CCG for its syntax-semantics interface

2. Much of effort spent on efficient search

3. CCG Parsers tend to learn ad hoc combinators

4. Graph-based approaches better, Transition-based approaches faster…

5. Best Accuracy comes from smaller grammar 


