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Ambati et al., 2016
How to parse CCG with Shift and Reduce?

New Transition Rules
◦ REDUCE-LEFT(cat): remove s1 from the stack and tag constituent as cat 
◦ REDUCE-RIGHT(cat): remove s2 from the stack and tag constituent as cat 
◦ REDUCE-UNARY(cat): remove s1 (or s2?) from the stack and tag constituent as cat 
◦ SHIFT: moves b1 from the buffer to the stack



Ambati et al., 2016
Ambati et al.’s parser uses 2296 total Transitions:
◦ 340 REDUCE-LEFT(cat)
◦ 593 REDUCE-RIGHT(cat)
◦ 78 REDUCE-UNARY(cat)
◦ 1285 SHIFT



Ambati et al., 2016
Nodes to consider: 
◦ a) top 4 nodes in the stack
◦ b) next 4 nodes in the input 
◦ c) left and right children of the top 2 nodes in the stack

34 features:
◦ Word embeddings from (a-c)
◦ POS embeddings from (a-c)
◦ CCG tag embeddings from (a, b) + lexical heads of 2 nodes in the stack

Input layer = 34 x 50 (embedding size)
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Greedy Search
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Beam Search
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Beam Search



Evaluation
1. Supertag Prediction (F1)

2. Unlabelled F1 (per constituent)

3. ✔ Labelled F1 (per constituent)

4. ❌ Exact Match



Other Approaches
1. LSTM CCG Parsing (Lewis et al. 2016)

2. A* CCG Parsing with a Supertag-factored Model (Lewis and Steedman, 2014)



CCG Leaderboard

C&C + RNN (Xu et al., 2015)

EasyCCG (Lewis and Steedman, 2014)

Leader (Lewis et al. 2016)



CCG Leaderboard: Speed

EasyCCG (Lewis and Steedman, 2014)

LSTM GPU (Lewis et al. 2016)



A* search (Lewis and Steedman, 2014)



A* Parsing (Lewis and Steedman, 2014)
Choose next action x by minimizing:

◦ f(x) = dist(current, x) + dist(x, endpoint) 



LSTM (Lewis et al. 2016)
Stacked BiLSTM Supertagger



LSTM (Lewis et al. 2016)
Contribution: What we need is a strict deterministic grammar and a great lexical tagger



Reflections
1. Computer Scientists like CCG for its syntax-semantics interface

2. Much of effort spent on efficient search

3. CCG Parsers tend to learn ad hoc combinators

4. Graph-based approaches better, Transition-based approaches faster…

5. Best Accuracy comes from smaller grammar 


